PEGylation of gold-decorated silica nanoparticles in the aerosol phase.

نویسندگان

  • Pingyan Lei
  • Steven L Girshick
چکیده

Coating of gold-decorated silica nanoparticles with polyethylene glycol (PEG) was carried out in the aerosol phase. The process involves first functionalizing the nanoparticles at ~225 ° C with a bifunctional reactant, 2-mercaptoethanol (ME), for which one end is a thiol that attaches to the gold surface and the other end is a terminal hydroxyl group, and then introducing ethylene oxide (EO), which reacts at ~440 ° C with the hydroxyl group via a ring-opening polymerization to grow PEG. The morphology, elemental composition and surface chemistry of the PEGylated nanoparticles were characterized by means of transmission electron microscopy, energy dispersive x-ray spectroscopy in scanning transmission electron microscopy, x-ray photoelectron microscopy and Fourier transform infrared spectroscopy. The increase in mobility diameter of the nanoparticles due to PEG growth was measured on-line by tandem differential mobility analysis. The PEG coating thickness was found to increase with increases in gold decoration density, flow rate of ME, and flow rate of EO. Coating thicknesses up to ~4.5 nm were measured on nanoparticles whose initial mobility diameter equaled 39 nm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-phase production of gold-decorated silica nanoparticles.

Gold-decorated silica nanoparticles were synthesized in a two-step process in which silica nanoparticles were produced by chemical vapor synthesis using tetraethylorthosilicate (TEOS) and subsequently decorated using two different gas-phase evaporative techniques. Both evaporative processes resulted in gold decoration of the silica particles. This study compares the mechanisms of particle decor...

متن کامل

A silica-based magnetic platform decorated with mixed ligand gold nanoparticles: a recyclable catalyst for esterification reactions.

A novel and convenient synthetic strategy for the preparation of magnetically responsive silica nanospheres decorated with mixed ligand protected gold nanoparticles is described. Gold nanoparticles are attached to the silica surface via stable amide bond formation. The hierarchical nanospheres show promising results as reusable and efficient catalysts for esterification reactions and they can b...

متن کامل

Gradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...

متن کامل

Gradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...

متن کامل

Facile meltPEGylation of flame-made luminescent Tb3+-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica.

Flame aerosol technology is a versatile method for scalable synthesis of nanoparticles. Since particles are produced and collected in a dry state, dispersibility and further functionalization could pose hurdles to their biomedical use. We report on a one-pot, scalable and robust procedure for the PEGylation of flame-made yttria and silica nanoparticles. We demonstrate improved colloidal stabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 24 33  شماره 

صفحات  -

تاریخ انتشار 2013